On the strong $(L)$ summability of Fourier series

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further result on the strong summability of Fourier series

This article deals with some special cases which are extension of the strong summability of Fourier series with constant factor. We obtain a new equivalent form of inequalities A 2π 0 φ(e iθ) r dθ ≤ 2π 0 1 0 (1 − ρ) φ (z) 2 dρ r/2 dθ ≤ B 2π 0 φ(e iθ) r dθ, (1) 2π 0 1 0 (1 − ρ) q−1 φ (z) q dρ r/q dθ ≤ C 2π 0 φ(e iθ) r dθ, (2) D 2π 0 φ(e iθ) r dθ ≤ 2π 0 1 0 (1 − ρ) p−1 φ (z) p dρ r/p dθ.

متن کامل

Almost Everywhere Strong Summability of Two-dimensional Walsh-fourier Series

A BMO-estimation of two-dimensional Walsh-Fourier series is proved from which an almost everywhere exponential summability of quadratic partial sums of double Walsh-Fourier series is derived.

متن کامل

Logarithmic Summability of Fourier Series

A set of regular summations logarithmic methods is introduced. This set includes Riesz and Nörlund logarithmic methods as limit cases. The application to logarithmic summability of Fourier series of continuous and integrable functions are given. The kernels of these logarithmic methods for trigonometric system are estimated.

متن کامل

On the Summability of Fourier Series. Fifth Note.

and evaluating the generalized sum of (1) as the lim rm(x; f). The matrix ?2 will be subjected to the restrictions (i-iv) below. These restrictions are of such general nature, however, that they are satisfied by a great majority of the definitions of summability known in the literature. Our first condition on 21 is significant only in the case where 91 is of infinite reference. It is automatica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1968

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1968-0218832-3